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Abstract—This paper deals with vibration and buckling analyses of rectangular plates with
nonuniform elastic constraints against rotation using the spline strip method. The effect of
nonuniformity of elastic constraints and aspect ratios on these problems is analyzed, and the results
are also compared with those based on uniform elastic constraints. It is found from the numerical
examples that the influence of the nonuniformity of elastic constraints on the natural frequencies
and buckling loads become evident.

1. INTRODUCTION

Extensive study has been carried out on the analyses of vibration[1-3] and buckling[4]
of plates with classical boundary conditions. However the boundary conditions in many
structures which are used in civil, mechanical, ship or aeronautical engineering are far
from classical in nature. Such edges may be considered as elastically restrained in rotation
and/or deflection.

Vibration[5-14] and buckling[15-18] of plates restrained against rotation along
edges have been analyzed utilizing numerical methods such as the Rayleigh-Ritz method,
Galerkin method and finite element method. However, all of the foregoing references
consider only elastic constraints which are uniform along a given boundary. Elastic
constraints represent stiffness coupling with surrounding support structure and the stiffness
of such surrounding structure along the common boundary may not be constant in
practical applications, but will vary from point to point.

Recently Leissa et al. analyzed the vibration problem for nonuniform elastic translation
and/or rotational constraints in the case of a circular plate by using the exact method[19].
Laura et al.[20-22] obtained the solution of vibration and buckling of circular plates with
nonuniform edge constraints by the Rayleigh—Ritz method. Moreover Leissa et al.[23]
analyzed vibrations of rectangular plates with nonuniform elastic edge supports in rotation
using the exact method and the Rayleigh—Ritz method.

Fujii and Hoshino[24] presented discrete and non-discrete mixed method with B-
spline functions to analyze vibration and buckling of rectangular plates. Fan and
Cheung[25] applied the spline finite strip method to analyze vibrations of rectangular
plates with complex support conditions, and used spline functions to replace the function
series which satisfies a priori the end conditions of a strip.

In this paper, vibration and buckling of isotropic thin rectangular plates with
nonuniform and continuous constraints against rotation are analyzed by using the spline
strip method[26] which is a refined finite strip approach with displacement functions given
as the product of Fourier series in the longitudinal direction and spline functions in the
other direction.

The effect of nonuniform elastic constraints in rotation on frequencies and buckling
loads of rectangular plates are investigated.
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Fig. 1. Rectangular plate with nonuniform elastic constraints in rotation and the definition of the
distribution function of nonuniform constraints.

2. FORMULATION BY SPLINE STRIP METHOD

The solution procedure of vibration and buckling of rectangular plates with elastically
nonuniform restraints against rotation using the spline strip method is described in this
section. The rectangular plate is idealized by discrete strip elements as shown in Fig,. 1.

The displacement function is cxpressed by the product of the basic function serics in
the longitudinal direction and spline functions which are known as piecewise polynomials
in the other direction

W)= 3 S0Vl (1)
m=1

in which Y,(y) is the basic function satisfying the end conditions in the y-direction. The
spline function, S(x), of which high derivatives are continuous in the discretized sub-regions
and higher numerical stability, is obtained. The spline functions[27] are defined as

S 3 Coualeh =+ M, — o

where N, (x) is the normalized B-spline functions, k — 1 is the degrees of B-spline functions
and M, is the number of strips.
Substituting eqn (2) into eqn (1), the displacement function is expressed by

W=3 3 ConNus¥)¥nly) 3)
m=1p=1
or
W= s; [N1Y,(C}. (4)

where
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IN] =[Ny u(x), N2 ulx), s Ni idX)] (5)

and
{Cln={CimCamCam---»Cim}- 6

The strain energy due to bending U, the kinetic energy T of the isotropic rectangular
plate and the potential V of the in-plane loads S,, S, and S,, are given in the Cartesian
coordinate system as follows:

1r
U, = (D/2)(b/a3)-[ f [(2W/0E? + A20*W/on?)?
o Yo

= 21 — V)A*{(@*W/aL>\a*W/on*) — (9*W/0kom)*}1d¢ dn ™
T= (1/2)phabw2f f w2d¢dn (8)
0 Yo

in which £ = x/a, n = y/b, A = a/b, v is Poisson’s ratio, D is flexural rigidity, A is thickness,
p is density and w is circular frequency (rads™!) of the rectangular plate.

11
V= —(1/2)_[ '[ [N(0W/0Z)* + 2N, (0W/[0XOW [on)
0 Yo
+ A2N(@0W/on)*]dEdn )

where N, = S, (bh/a), N,, = S, (bh/a) and N, = S (bh/a).
To deal with nonuniform elastic constraints against rotation along the edges as shown
in Fig. 1, some translational and rotational elastic springs having stiffnesses « and S,

respectively, are attached to the edges. Here a(y) and B(y) along the edges at x = 0 and a
are defined by

a() = a9,  BOY) = BoZ(y) (10)

in which Z(y) shows the distribution function corresponding to nonuniform elastic
constraints, and a, and B, are the maximum values of the elastic springs. Hence, the
following boundary conditions are required along the constrained edges

Vi(s) = aW } a1
M.(s) = B@W/dn) = BoZ(s\oW/dn))
The strain energy due to the continuous elastic constraints, U, is given by
U,= (1/2)§M,,(s)(aW/6n) ds + (1/2)§V,,(S)st (12)

in which V, is the edge reaction, M, is the normal bending moment and dW/on is the
normal slope at the edges. The coordinate along the boundary of the edges is s.

The total strain energy U including that of the rectangular plate and the energy due
to elastic constraints is presented as
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U=U,+ U, (13)

The displacement functions defined previously are expressed as follows:

Wit = L Z’l ComNo ) Yol
m=1n (14)

r

W&, m) Z Z CoasNaal8)Ydn).

s=1d=1

By substituting eqns (14) into eqns (13), (8) and (9), the expressions for U, T and V become

= (D/2)(b/a’) Z Z Z Z ComCas [IREIR) + 2410022

m=1n=1s=1d

+ 221 = T + VI + TIID)]

+(1/2) Z z Z Z ComCasl{aoNS2I + (Bo/a®)N 2 LY s =6

m=1n=1s=1d=1

+ {agNRJ% + (Bo/a*)N, Lg(s)}|¢=l] (15)

T = (1/2phw’ab ¥ Z Y Y ComCa %I (16)

m=1n=1s=14d=1

and

V=123 Z ¥ Z CamCasl N1 J22 + 20N, 1300 0

m=in=1s=1d=1

+ AANIQJLL (17)

in which the integrals [2], J2% and LZ¢ are defined by

rl
1% =| NAGONIE AL
Jo

ri

Ji = YEnYPn)dn (18)

Y0

rl

L= ZmY2mYPn)dn

vo

and NE{ is expressed as

N2 = NIUONEKC) (19}

where p and g are the order of the derivative of the basic functions or B-spline functions.
The coefficients {C} are determined by using the principle of minimum potential
energy as follows:
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n=12...,i
m=12...,r
which can be expressed in matrix form
[KY{C,u} = n*’[M] + k*[G]. 03)

Here n* = (wa?/n?),/(ph/D) and k* is the buckling load parameter. [K], [M] and [G] are
matrices obtained from eqns (15), (16) and (17), respectively. The order of these matrices
is expressed by (k + M, — 1)xr, where k — 1 is the degrees of B-spline functions, M, is the
number of strips and r is the number of series terms in the basic functions.

3. NUMERICAL EXAMPLES AND DISCUSSIONS

The authors[26] show the application of the spline strip method to analyze bending
and vibration of skew plates with classical boundary conditions, and good accuracy and
stable convergence of the results have been obtained.

In this paper, the effects of nonuniformity of elastically continuous constraints against
rotation on natural frequencies and buckling loads of rectangular plates are studied.

In the numerical examples, the basic function Y, is defined as

Y. (y) = sin(mny/b). (22)

The distribution function of elastic constraints against rotation is assumed as follows at
x=0and/orx=a

Z(y) = sin(ny/b). (23)

To evaluate the rotational stiffness of elastic springs, the rotational stiffness parameter,
k is introduced as

Kk = Bob/D (24)

where f, is the maximum stiffness of elastically rotational springs and b is the length of
edges as shown in Fig. 1.

The plate under consideration is rigidly supported against transverse displacement:
&y = o0 is assumed in calculations.

To demonstrate the accuracy and convergence studies of the present approach,
vibration and buckling of skew plates with uniform elastic constraints in rotation have
been analyzed, and good accuracy and stable convergence were obtained in Refs [26,28].

3.1. Vibration of rectangular plates with elastically restrained edges against rotation

To show the accuracy of the present numerical method, fundamental frequency
parameters, iif = wa?,/(ph/D) of isotropic rectangular plates with nonuniform rotational
constraints on two opposite edges are presented in Table 1, comparing with the exact
solutions and the approximate values obtained using the Ritz method by Leissa et al.[23].
Here, the continuous rotational stiffnesses are assumed to vary along two opposite edges

by B(x) = Box(a — x).

SAS 23:)-D
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Table 1. Comparison of fundamental frequency parameters. i} = wa?,/(ph;D) for simply supported
rectangular plates with parabolically varying rotational constraints on two opposilte edges,
Pix) = foxta — x), v =03 and 2, = «

hasb | moa®0 | PUUER Soiitionis method 2y
0.0 12.337 12.337 -
0.1 12.341 12.341 12.344
0.5 1.0 12.373 12.372 12.401
10.0 12.626 12.621 12.975
100.0 13.333 13.319 13.598
= 13.688 13.688 -
0.0 19.739 19.739 -
0.1 19.758 19.757 19.765
1.0 1.0 19.924 19.915 20.114
10.0 21.249 21.235 24.068
100.0 25.815 25.799 28.193
® 28.951 28.951 -
0.0 49.348 49.348 -
0.1 49.415 49.405 49.428
2.0 1.0 50.064 49.914 50.981
10.0 54.423 54.387 71.545
100.0 74.546 74.223 91.890
@ 95.256 95.256 -

* In the present calculations, k-1=4, My=8 and r=15 arc used.

It is found from the table that present results are closer to the exact solutions[23]
than those of the Ritz method for different aspect ratios and rotational rigidity parameters,
Boa*/D.

To investigate the influence of the continuous distribution of nonuniform elastic
constraints in rotation on the natural frequency parameters, n* = (w/n?)a®\/(ph/D), several
numerical examples are carried out. Here the nonuniform elastic constraint is assumed to
be distributed as the half sine function (see Fig, 1), and the effect of in-plane load is neglected
(S, = 0). In all calculations, the number of strips, M, = 8, the terms of Fourier series,
r = 15 and the degree of spline functions k — 1 = 4 are used.

Table 2 shows the first three frequency parameters of simply supported rectangular
plates with opposite edges elastically restrained against rotation. The rotational stiffness
parameter, Kk = fob/D varies from 0 to co, and aspect ratios of 4 = a/b of 0.5, 1.0 and 2.0
are used. The results for plates with nonuniform elastic constraints are also compared with
those for uniform constraints having the same maximum stiffness, f, of rotational springs
and with those for uniform average constant value, (2/n)f, which gives the same area
under the curve of f(y) = B, sin(ny/b).

It is found that the frequency parameters are influenced by the distribution of elastically
rotational constraints. The effect of rotational parameters on the frequencies is evidently
shown for lower aspect ratios. The results calculated for the case of nonuniform rotational
constraints always show values between those in the cases of uniform constant constraints,
B, and of uniform average constant values, (2/m)f,.

Table 3 shows the first three frequency parameters of rectangular plates with two
opposite edges elastically restrained in rotation and free, respectively (see Type 3 in
Fig. 2).
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Table 2. The first three natural frequency parameters, n* = (w/a?)a?,, (ph/D) of rectangular plates
with two opposite edges clastically constrained in rotation; M, =8, k-1 =4,r=15 v=03,
ap=ocand §,=0

Aspect ratio,l=a/b

=5 b/ Modes 0.5 1.6 2.0
O ezt T O | O O
1 5.000 5. 000 5.000 2.000 2.000 2.000 1.250 1.250 1.250
0.0 2 8.000 8.000 8.000 5.000 5.000 5.000 2.000 2.000 2.000
" 3 13.00 13.00 13.00 5.000 5.000 5.000 3.250 3.250 3.250
1 5.257 5.197 5.300 2.079 2.060 2.091 1.264 1.262 1.267
1.0 2 8.133 8.125 8.192 5.026 5.025 5.038 2.035 2.030 2.040
3 13.08 13.08 13.12 5.129 5.098 5.150 3.307 3.293 3.314
1 6.034 5.830 6.176 2.291 2.239 2.327 1.303 1.294 1.308
5.0 2 8.574 8.548 8.794 5.109 5.105 5.148 2.139 2.115 2.155
3 13.35 13.35 13.51 5.511 5.411 5.579 3.458 3.420 3.483
1 6.570 6.397 6.863 2.442 2,380 2.484 1.326 1.317 1.332
10.0 2 8.987 8.955 9.307 5.182 5.176 5.233 2.206 2.17% 2.224
3 13.62 13.62 13.87 5.813 5.684 5.902 3.568 3.523 3,598
1 7.431 7.132 7.646 2.598 2.539 2.637 1.347 1.340 1.353
20.0 2 9.547 9.518 9.935 5.271 5.266 5.327 2,271 2.247 2.286
3 14.01 14.01 14.33 6.157 6.024 6.249 3.681 3.638 3.709
1 8.171 7.911 8.364 2.727 2.683 2.757 1.364 1.358 1.367
40.0 2 10.17 10.17 10.55 5.360 5.35%8 5.410 2.321 2.304 2.332
3 14.47 14.50 14.82 6.470 6.361 6.546 3.77% 3.743 3.796
1 8.904 8.746 9,030 2.837 2.814 2.854 1.376 1.374 1.378
100.0 2 10.88 10.89 11.15 5.451 5.452 5.482 2.362 2.354 2.368
3 15.04 15.10 15.32 6.756 6.695 6.802 3.853 3.838 3.865
1 9.652 9.652 9.652 2.933 2.933 2.933 1.387 1.387 1.387
® 2 11.713 11.73 11.73 5.546 5.546 5.546 2.396 2,396 2.39
3 15.84 15.84 15.84 7.024 7.024 7.024 3.92) 3.921 3.921

"N () =Bosin(ry/m) M EZZA B(y)=(2/m By ana *tt [, By)= g

The valucs calculated for the case of nonuniform constraints are less than those in
the casc of uniform constraints, and the difference between them becomes larger with a
decrease of aspect ratios.

3.2. Buckling of rectangular plates with elastically restrained edges against rotation

The loaded edges are considered to be simply supported, while the unloaded edges
arc cither restrained in rotation, or are completely free both laterally and rotationally.

In the calculations, three types of rectangular plates with several constraints as shown
in Fig. 2 are analyzed by the present method, and the results are also compared with those
calculated in the case of uniform constraints in rotation.

Table 4 shows the influence of nonuniform rotational constraints on the buckling
load parameter, k* = S,a*/Dn? of rectangular plates with opposite edges elastically
constrained against rotation (Type 1), subjected to uniform compression S,. The rotational
stiffness parameter x = Bob/D varies from 0 to oo, and the aspect ratios of ' = b/a of 0.5,
1.0, 1.5, 2.0 and 2.5 are used. The effect of nonuniformity of the elastic constraints on this
problem is shown in Fig. 3 for the different aspect ratios and rotational stiffness parameters.

It is found that the effect of nonuniformity of rotational constraints on the buckling
load parameters is concerned with the aspect ratios and rotational stiffness parameters.
However the influence of the nonuniformity of the constraints is deduced with increasing
of the rotational stiffness parameters.

Tables 5 and 6 show the buckling load parameters of rectangular plates with opposite
edges simply supported and elastically restrained against rotation (Type2), and with
opposite edges elastically restrained and free (Type 3), respectively, subjected to uniform
compression S,.

It is seen that the effect of nonuniform elastic constraints on the results depends on
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Table 3. The first three natural frequency parameters, n* of rectangular plates with opposite edges

clastically constrained in rotation and free; M, = 8. A -1 =4, r =158, =0 and v=03
Aspect ratio,i= a/b
k=Hob/D| Modes 0.5 1.0 2.0
J L N b IV N I I VS

1 1.635 1.635 1.184 1.184 0.3300 0.3300

0.0 2 4.735 4.735 2.812 2.812 0.4731 0.4731
k) 7.628 7.628 4.175 4.175 0.7568 0.7568

1 1.698 1.708 1.196 1.197 1.045 1.045

1.0 2 4.756 4.764 2.859 2.867 1.508 1.510

3 7.758 7.781 4.177 4.177 2.415 2.419

1 1.863 1.824 1.224 1.224 1.049 1.055

5.0 2 4.820 4.843 2.986 3.039 1.537 1.535

3 8.170 8.578 4.186 4.207 2.472 2,486

1 1.975 2.005 1.241 1.246 1.051 1.052

10.0 2 4.875 4.913 3.075 3.099 1.554 1.558
3 8.516 8.623 4.194 4.199 2.509 2.519

1 2.086 2.114 1.257 1.261 1.053 1.054

20.0 2 4.941 4.984 3.165 3.188 1.569 1.573
3 8.935 9.054 4.202 4.207 2.545 2.554

1 2.175 2.196 1.269 1.272 1.055 1.055

40.0 2 5.008 5.043 3.238 3.255 1.581 1.583
3 9.337 9.443 4.211 4.214 2.573 2.579

1 2.214  2.230 | 1.274 1.276 | 1.055 1.055

60.0 2 5.040 5.071 3.269 3.283 1.585 1.587
3 9.533 9.624 4.214 4.218 2.584 2.589

1 2,235 2.248 1.276 1.278 1.055 1,055

80.0 2 5.059 5.087 3.288 3.299 1.588 1.589
3 9.649 9.727 4.217 4.219 2,591 2.595

1 2.249 2,260 1.278 1.280 1.055 1.056

100.0 2 5.074 5.096 3.299 3.308 1.589 1.591
3 9.726 9.794 4.218 4.220 2.595 2.598

1 2.278 2,285 1.282 1.282 1.056 1.056

200.0 2 5.104 5.118 3.323 3.328 1.593 1.593
3 9.898  9.942 | 4.222 4.223 | 2.604 2.605

1 2.312  2.312 | 1.286 1.286 | 1.0S6 1.056

L 2 5.142 5.142 3.351 3.351 1.596 1.596

3 10.01 10.01 4.225 4.225 2.613 2.613

v LN B(y)=:-oﬁ1n(y)?’:j 2 Bly)= fo

the aspect ratios and rotational stiffness parameters. To compare the values of the plates
having nonuniform elastic constraints with those in the case of uniform constraints, the
maximum difference between them becomes 7% for the aspect ratio 2’ = 2.5.

4. CONCLUSIONS

In this paper, vibration and buckling of rectangular plates with nonuniform elastic
constraints in rotation have been investigated using the spline strip method.
The following conclusions have been obtained.

(1) The present approach can deal with the arbitrary distribution of elastic constraints
against rotation.

(2) The values of rectangular plates calculated in the case of half sine distribution of
elastic constraints in rotation are less than those of uniform constraints.

(3) The effect of nonuniform elastic constraints on the results is concerned with aspect
ratios and rotational stiffness parameters of constraints.

Acknowledgement—The results presented in this paper were obtained in the course of a research programme,
Grant No. 59750362, supported by the Ministry of Education, Science and Culture of the Japanese Government.
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Table 4. Buckling load parameters, k* of rectangular plates with opposite edges elastically restrained

in rotation, subjected to uniform compression S; M, =8 k—1=4,r=15and v = 0.3

Aspect ratio,) = b/a

<=8ob/D 0.5 1.0 2.0 2.
OO COd0Ood e oo
0.0 6.250 6.250 4.000 4.000 4.340 .340 4.000 4.000 4.134 .134
0.1 6.267 6.270 4.034 4,040 4,351 .355 4.014 4.020 4.142 146
1.0 6.404 6.428 | 4.320 4.373 | 4.440 485 [4.133 4.194 | 4.206 4.243
5.0 6.788 6.847 5.250 5.414 4,772 939 4.592 4.833 4.454 617
10.0 7.032 7.096 5.963 6.168 5.084 327 5.040 5.342 4.708 979
20.0 7.262 17.317 6.746 6.953 5.506 .799 5.429 5.705 5.093 485
40.0 7.438 7.476 7.183 7.317 5.972 . 255 5.792 6.096 5.594 .059
60.0 7.511 7.541 [ 7.304 7.418 | 6,225 6.476 |6.013 6.303 |5.910 287
80.0 7.551 7.575 7.378 7.476 6.386 .607 6.163 6,431 6.108 415
100.0 7.577 7.597 | 7.428 7.491 | 6.497 6.694 [6.271 6.518 |6.216 6.504
200.0 7.631 7.643 [ 7.544 7.597 | 6.763 6.888 |[6.550 6.720 |6.507 6.718
© 7.691 7.691 7.691 7.691 7.116 116 6.972 6.972 6.999 .999
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Fig. 3. The effect of nonuniformity of elastic constraints in rotation on the buckling load para-

meters, k*.

Table §. puckling logd parameters, k* of rectangular plates with opposite edges simply supported
and clastically restrained in rotation, subjected to uniform compression S, M, =8 k~1=4,

r=15and v =03

Aspect ratio,)' =Db/a
x=8ob/D 0.5 1.0 1.5 2.0 2.5
OO OO0 o Cd e L d o I

0.0 6.250 6.250 | 4.000 4.000 | 4.340 4.340 | 4.000 4.000 | 4.134 4.134
0.1 6.258 6.260 | 4.017 4.020 | 4.345 4.348 | 4.007 4.010 | 4.138 4.140
1.0 €.325 6.337 | 4.157 4.182 | 4.390 4.411 | 4.066 4.096 | 4.170 4.188
5.0 6.501 6.527 | 4.577 4.646 | 4.548 4.624 | 4.286 4.395 | 4,291 4.367
10.0 6.604 6.630 | 4.866 4.944 | 4.688 4.791 | 4.488 4.646 | 4.410 4.529
20.0 6.696 6.717 | 5.155 5.227 { 4.865 4.980 | 4.758 4.944 | 4,583 4.740
40.0 6.762 6.776 | 5.387 5.440 | 5.046 5.148 | 5.050 5.227 | 4.791 4.960
60.0 6.789 6.800 | 5.487 5.528 | 5.138 5.225 | 5.206 5.361 | 4.915 5.073
80.0 6.803 6.812 | 5,542 5.576 | 5.194 5.269 | 5.305 5.425 | 4,997 5.142

100.0 6.813 6.820 | 5.578 5.607 | 5.232 5.297 | 5,369 5.455 | 5.056 5.188

206.0 6.832 65.836 | 5.654 5.671 | 5.320 5.360 | 5.467 5.524 | 5.205 5.294
- 6.853 6.853 | 5.740 5.740 | 5.431 5,431 | 5.606 5.606 | 5.423 5.423
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Tablc 6. Buckling load parameters, k* of rectangular plates with opposite edges clastically restrained

in rotation and free (Type 3), subjected to uniform compression S;; M, =8,k —~ 1 =4,r =15 and
v=03
Aspect ratio,\'=sb/a
k=8 b/D 0.5 1.0 1.5 2.0 2.5
OO OO0 A Cd O T3 O
0.0 4.356 4.356 | 1.402 1.402 | 0.8578 0.8578| 0.6681 0.6681| 0.5806 0.5806
0.1 4.357 3.358 | 1.405 1.405 | 0.8622 0.8629) 0.6738 0.6748| 0.5875 0.5887
1.0 4.370 4.373 | 1.430 1.434 [ 0.8982 0.9047{ 0.7207 0.7294| 0.6455 0.6563
5.0 4.403 4.407 1.498 1.509 1.005 1.022 0.8679 0.8930 0.8356 0.8694
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